Thursday, August 4, 2016

how long until this is implantable...

Ars Technica | IBM creates world’s first artificial phase-change neurons
IBM Research in Zurich has created the world's first artificial nanoscale stochastic phase-change neurons. IBM has already created a population of 500 of these artificial neurons and used them to process a signal in a brain-like (neuromorphic) way.
This breakthrough is particularly notable because the phase-change neurons are fashioned out of well-understood materials that can scale down to a few nanometres, and because they are capable of firing at high speed but with low energy requirements. Also important is the neurons' stochasticity—that is, their ability to always produce slightly different, random results, like biological neurons.
Enough fluff—let's talk about how these phase-change neurons are actually constructed. At this point, it might help if you look at the first diagram in the gallery.
...Like a biological neuron, IBM's artificial neuron has inputs (dendrites), a neuronal membrane (lipid bilayer) around the spike generator (soma, nucleus), and an output (axon). There's also a back-propagation link from the spike generator back to the inputs, to reinforce the strength of some input spikes.
The key difference is in the neuronal membrane. In a real neuron, this would be a lipid bilayer, which essentially acts as both a resistor and a capacitor: it resists conductance, but eventually, with enough electricity along the input dendrite, it builds up enough potential that its own spike of electricity is produced—which then flows along the axons to other neurons—and so on and on.
In IBM's neuron, the membrane is replaced with a small square of germanium-antimony-tellurium (GeSbTe or GST). GST, which happens to be the main active ingredient in rewritable optical discs, is a phase-change material. This means it can happily exist in two different phases (in this case crystalline and amorphous), and easily switch between the two, usually by applying heat (by way of laser or electricity). A phase-change material has very different physical properties depending on which phase it's in: in the case of GST, its amorphous phase is an electrical insulator, while the crystalline phase conducts.
With the artificial neurons, the square of GST begins life in its amorphous phase. Then, as spikes arrive from the inputs, the GST slowly begins to crystallise. Eventually, the GST crystallises enough that it becomes conductive—and voilà, electricity flows across the membrane and creates a spike. After an arbitrary refractory period (a resting period where something isn't responsive to stimuli), the GST is reset back to its amorphous phase and the process begins again.

No comments:

Post a Comment